THE AZO-CHROMOPHOR AS COMPONENT IN PHOTO [2+2]-CYCLOADDITION REACTIONS SYNTHESIS, STRUCTURE AND PE-ANALYSIS OF PLANAR-PARALLEL BISAZO-MOLECULES **

H. Prinzbach * and G. Fischer
Chemisches Laboratorium der Universität Freiburg i. Br., BRD

G. Rihs and G. Sedelmeier Ciba-Geigy AG, Basel, Schweiz

E. Heilbronner and Yang Z.-z.
Institut für Physikalische Chemie der Universität Basel, Schweiz

In order to test for a photo [2+2]-cycloaddition between two azo-units a tetracyclic bisazo-compound (7) has been constructed, for which the X-ray analysis confirms a planar-parallel arrangement of the N₂-units and transannular N-N-distances of 2.877 Å and 2.821 Å, resp. In preliminary photoexperiments N₂-elimination predominates in 7; in the N-oxides 10/11, however, after direct excitation (λ - 254 nm) N₂/N₂0-metathesis (13/14 and 15, resp.) is observed.

There are good reasons for the N=N-unit not being a common $_{\pi}$ 2-component in photo [2+2]-cycloaddition reactions ¹⁾. In 1977 a first example of an azo/ene-cycloaddition has been reported by <u>Berning</u> and <u>Hünig</u> ²⁾. A photo [2+2]-cycloaddition with two N=N-participants yielding a tetrazetidine-ring (A)-attractive as it would be for prepara-

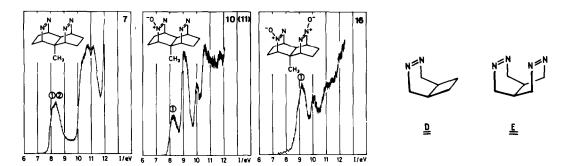
tive as well as theoretical reasons - has not yet been realised. Because of the usually very efficient N_2 -elimination 1 such a process has only a chance, if the prerequisites for the cycloaddition are exceptionally favorable. Under these aspects bisazo-molecules with the general structures B and C are being synthesized, in which the stereoelectronic situation (distances, angles) can be influenced systematically by variation of the bridges X,Y $\frac{3}{2}$. In this communication we report results with the bisazo-compound $\frac{7}{2}$.

The synthesis of 7 was based on the syn-bisurazole $\frac{1}{2}$ (Ginsburg et al. $\frac{5}{2}$) and implied as critical step the hydrogenolysis of the sterically well shielded cyclopropane ring in $\frac{2}{2}$. The transformation $\frac{2}{2} \rightarrow \frac{3}{2}$ is necessary in order to avoid the very facile N_2 -elimination expected for the bisazo-compound $\frac{6}{2}$ ($\binom{2}{7}$ 2+ $\binom{2}{7}$ 2)-cycloreversion $\binom{6}{7}$). Indeed,

after hydrolysis of 2 and oxidation the bisvinyl-cycloheptadiene 5 is the exclusive product (85%, colourless, highly reactive liquid). The hydrogenolysis $2 \rightarrow 3$ occurs only under such drastic conditions, that C-N-bond fission (probably 4) is competing. After optimisation (acetic acid, Pd/C (10%), 300 bar H_2 , 80° C, 30 h) a 90% yield of a ca. 6:1 mixture of 3 and 4 is achieved, from which 3 (m.p.> 340° C) is separated by crystallisation (methanol). From 3 the yellowish, crystalline and thermally rather

stable $(1\alpha, 2\alpha, 3\alpha, 6\alpha, 7\alpha, 8\alpha)$ -2-methyl-4,5,9,10-tetraazatetracyclo $[6.2.2.2^{3}, 6.0^{2}, 7]$ tetradeca-4,9-diene (7) is obtained (80%; m.p. 231° C $(dec.): \lambda_{max}(CH_3CN)$ = 385 um $(\epsilon = 240)$ 258 (sh, 260), 239 (610); $J_{6.7}$ = $J_{7.8}$ = 1 Hz).

According to the X-ray analysis 7) the N-N-units in 7 have a perfect planar-parallel orientation (dev. from the mean plane 0.004 Å) and transannular N-N-distances of 2.877 Å and 2.821 Å, resp. Obviously, the methyl group exerts a noticeable buttressing effect. Under similar conditions effective $\begin{bmatrix} 2+\\ 1 \end{bmatrix}$ and $\begin{bmatrix} 4-\\ 1 \end{bmatrix}$ cycloadditions have been observed $\begin{bmatrix} 2-4 \end{bmatrix}$.


In preliminary experiments direct ($\lambda=254$ nm, $\lambda>280$ nm) and sensitised excitation (acetone) of 7 causes N₂-loss (primary products 8/9). However, upon direct excitation of the N-oxides 10/11 (as a ca. 6:4 mixture; $\lambda_{\rm max}$ (CH₃0H)= 241 nm ($\epsilon=5$ 000), 388 (125)⁸) with monochromatic 254 nm light (CH₃0H, 30°C) the isomers $\frac{13}{14}$ (ca. 20%, ca. 7:3) and the symmetrical bispyrazoline 15 (ca. 5%, (1 α ,4 α ,7 α ,10 α ,13 α ,14 α)-11-methyl-2,3,8,9-tetraazatetracyclo[8.2.2.0^{4,12}.0^{7,11}] tetradeca-2,8-dien, m.p. 164°C (dec.), $\lambda_{\rm max}$ (CH₃0H)= 325 nm (ϵ = 630); J_{1,12}=J_{4,12}= 10.5, J_{1,4} \simeq J_{7,10} \lesssim 1 Hz) are isolated

(HPLC, silica gel, ethylacetate). An obvious pathway for the N_2/N_2 0-metathesis is a

photo [2+2]-cycloaddition and cleavage of the highly strained tetrazetidine-oxides $(\underline{12})^{9}$. An alternative, though less likely, explanation is that the N $_2$ 0-unit partici-

pates in this process after its transformation into the exadiaziridine ring 10) (or its nitrosimine-dipole) or after nitroso/nitren-cleavage.

The He(I α)-PE-spectra of $\frac{7}{10}$, $\frac{10}{11}$ and $\frac{16}{10}$ are shown in the Figure. It is an unexpected feature of the PE spectrum of $\frac{7}{10}$ that the interaction of the two n lone pair orbi-

tal combinations of the two azo groups does not lead to a split of the two bands associated with their in-phase and out-of-phase combinations. The slight broadening of the band ① ② $(\overline{I_{1,2}^m} = 8.3_5 \text{ eV})$ indicates that $\overline{I_2^m} = \overline{I_1^m} \leqslant \sim 0.3 \text{ eV}$. This observation is supported by the PE-spectrum of $\underline{10/11}$ $(\overline{I_1^m} = 8.3_0 \text{ eV})$, where the band ①, due to the n_1^{-1} -ionization process, is again observed at $\overline{I_1^m} = 8.3_0 \text{ eV}$, i.e. at the same place as in the PE spectrum of §, $(\overline{I_1^m} = 8.2_0 \text{ eV})^{11,12})$ within the limits of error. Comparison of the PE-spectra of $\underline{10/11}$ and of $\underline{16}$ $(\overline{I_1^m} = 9.2_0 \text{ eV})$ shows that the second peak in the former is associated with the N_2^0 group. Finally an STO-3G ab initio calculation for the models D and E, assuming standard geometry, except for the distance between the two N_2^0 groups in E, which is set equal to the observed one, yields $\overline{I_1^m} = 7.62 \text{ eV}$ for D and $\overline{I_1^m} = 7.54 \text{ eV}$, $\overline{I_2^m} = 7.93 \text{ eV}$ for E. Note that $\overline{I_1^m} = 7.74 \text{ eV}$ does not differ significantly from the value obtained for D.

Experiments are under way, in order to clarify the mechanistic aspects and to check the scope of intra-/intermolecular- N_2 -and N_2 0-cycloadditions, including systems with mixed homo- and heteronuclear double bonds.

This work was supported by the <u>Deutsche Forschungsgemeinschaft</u>, the Fonds der Chemischen Industrie and by the <u>Schweizerischer Nationalfonds</u> zur Förderung der wissenschaftlichen Forschung (Project No 2.622-0.80, part 146 (part 145 s. ref. 13)).

- 5) P. Ashkenazi, D. Ginsburg and E. Vogel, Tetrahedron 33, 1169 (1977).
- 6) E.L. Allred and K.J. Vorrhess, J. Am. Chem. Soc. 95, 620 (1973).
- 7) Crystals are monoclinic, space group $P_{2_1/c}$, a= 11.870, b= 8.385, c= 11.582 Å, β = 118.79°, Z= 4. Number of reflections used in least squares refinements: 1113. Final R-factor: 0.058.
- 8) W.R. Dolbier Jr., W.D. Loehle and W.M. Williams, Chem. Commun. 1972, 867; J.P. Snyder, V.T. Bandurco, F. Darack and H. Olsen, J. Am. Chem. Soc. 96, 5158 (1974).
- 9) For a similar stabilisation in a birdcage hydrocarbon (at 600°C) s. S.T. Fukunaga and R.A. Clement, J. Org. Chem. 42, 270 (1977).
- 10) F.D. Greene and S.S. Hecht, J. Org. Chem. 35, 2482 (1970).
- 11) R.J. Boyd, J.C. Bünzli, J.P. Snyder and M.L. Heyman, J. Am. Chem. Soc. 95, 6478 (1973).
- 12) K.N. Houk, Y.-M. Chang and P.S. Engel, J. Am. Chem. Soc. 97, 1824 (1975).
- 13) E. Hellbronner, B. Kovač, W. Nutakul, A.D. Taggart and R.P. Thummel, J. Org. Chem., in press.

(Received in Germany 28 December 1981)

^{**)} Photochemical Transformations, part 61; part 60: K.-H. Lehr, H. Fritz, L. Knothe, C. Krüger and H. Prinzbach, Chem. Ber., in press.

^{1)} P.S. Eugel, Chem. Rev. 80, 99 (1980); W. Adam and O. DeLucchi, Augew. Chem., Int. Ed. Engl. 19, 762 (1980).

²⁾ B. Albert, W. Berning, Ch. Burschka, S. Hünig, H.-D. Martin and F. Prokschy, Chem. Ber. 114, 423 (1981), cit. lit; s. L.A. Paquette, R. Carr, R. Charumiland and J.F. Blount, J. Org. Chem. 45, 4822 (1980).

³⁾ H. Prinzbach, G. Sedelmeier, C. Krüger, R. Goddard, H.-D. Martin and R. Gleiter;
Angew. Chem., Int. Ed. Engl. 17, 271 (1978); G. Sedelmeier, H. Prinzbach and H.-D.
Martin, Chimia 33, 329 (1979); G. Sedelmeier, Dissertation, Univ. Freiburg (1979).

⁴⁾ G. Fischer, Diplomarbeit, Univ. Freiburg 1981. The new compounds are fully analysed (elemental analysis, IR, UV, MS, ¹H-, ¹³C-NMR).